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ABSTRACT

In this paper we have introduced intuitionistic fuzzy mgy* continuous mappings and
intuitionistic fuzzy mgy™ irresolute mappings. Some of their properties are studied.
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1. INTRODUCTION

The concept of intuitionistic fuzzy sets was introduced by Atanassov [1] using the
notion of fuzzy sets. On the other hand Coker [2] introduced intuitionistic fuzzy
topological spaces using the notion of intuitionistic fuzzy sets. In this paper we introduce
intuitionistic fuzzy mgy* continuous mappings and intuitionistic fuzzy mgy* irresolute
mappings and studied some of their basic properties. We provide some relations of
intuitionistic fuzzy mgy* continuous mappings and intuitionistic fuzzy mgy* irresolute
mappings between existing intuitionistic fuzzy continuous and irresolute mappings.

2. PRELIMINARIES

Definition 2.1: [1] An intuitionistic fuzzy set (IFS in short) A in X is an object having the
form

A = {(x, pa(x), va(x) ) / xe X}
where the functions pa(X): X — [0, 1] and va(X): X — [0, 1] denote the degree of
membership (namely pa(X)) and the degree of non-membership (namely va(X)) of each
element xeX to the set A, respectively, and 0 < pa(x) + va(x) < 1 for each x € X. Denote
by IFS(X), the set of all intuitionistic fuzzy sets in X.

Definition 2.2: [1] Let A and B be IFSs of the form
A = {(x, pa(x), va(X) ) / xeX} and B = {{ x, us(x), va(X) ) / xe X}.
Then
(@) A < Bifand only if pa(x) < g (x) and va(x) > vg(x) for all xe X
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(b) A=Bifandonlyif Ac BandBc A

(€) A" ={(x, va(x), na(x) ) / xe X}

(d) AnB={{(x, ua(X) A ug (x), va(x) v va(x) )/ x € X}
(&) AuB={(x, pa(X) v ug (x), va(X) Ave(X) ) / x € X}

For the sake of simplicity, we shall use the notation A = ( x, ua, va) instead of
A = {{x, pa(x), va(x) ) / x € X. Also for the sake of simplicity, we shall use the notation A
= {< X, (MA, MB)a (VA:» VB)> } instead of A = < X, (A/HA> B/MB):' (A/VA, B/VB) >

The intuitionistic fuzzy sets 0- = {(x, 0,1 )/ x eX}and 1. ={(x,1,0)/x € X} are
respectively the empty set and the whole set of X.

Definition 2.3: [4] An intuitionistic fuzzy topology (IFT in short) on X is a family t of
IFSs in X satisfying the following axioms.

(i) 0,1 et

(i) Gi1n Gyetforany G;, Gy et

(iii) U Gje tforany family { Gi/ ieJ}c 1

In this case the pair (X, 1) is called an intuitionistic fuzzy topological space (IFTS in short)
and any IFS in t is known as an intuitionistic fuzzy open set (IFOS in short) in X.

The complement A° of an IFOS A in IFTS (X, 1) is called an intuitionistic fuzzy closed set
(IFCS in short) in X.

Definition 2.4: [4] Let ( X, t) be an IFTS and A = ( X, pa, va ) be an IFS in X. Then the
intuitionistic fuzzy interior and intuitionistic fuzzy closure are defined by

int(A)= U{G/GisanIFOSinXand Gc A},

cl(A) = n{K/KisanIFCSinXand Ac K}

Note that for any IFS A in (X, 1), we have cl(A®) = [int(A)]® and int(A%) = [cl(A)]".

Definition 2.5: [6] An IFS A = { (X, pa, va ) } in an IFTS (X, 1) is said to be an
(i) intuitionistic fuzzy semi open set (IFSOS in short) if A c cl(int(A)),

(i) intuitionistic fuzzy a-open set (IFaOS in short) if A c int(cl(int(A))),

(iii) intuitionistic fuzzy regular open set (IFROS in short) if A = int(cl(A)),

Definition 2.6: [7] The union of IFROSs is called intuitionistic fuzzy m-open set (IFTOS
in short) of an IFTS (X, t). The complement of IFOS is called intuitionistic fuzzy =« -
closed set (IFZCS in short).

Definition 2.7: [6] An IFS A = (X, pa, va ) in an IFTS (X, 1) is said to be an
(i) intuitionistic fuzzy semi closed set (IFSCS in short) if int(cl(A)) c A,
(i) intuitionistic fuzzy a-closed set (IFaCS in short) if cl(int(cl(A)) < A,
(iii) intuitionistic fuzzy regular closed set (IFRCS in short) if A = cl(int((A).

Definition 2.8:[5] AnIFS A of an IFTS (X, 1) is an
(i) intuitionistic fuzzy y-open set (IFyOS in short) if A c int(cl(A)) U cl(int(A)),
(ii) intuitionistic fuzzy y-closed set (IFyCS in short) if cl(int(A)) n int(cl(A)) < A.
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Definition 2.9: [11] Let A be an IFS in an IFTS (X, t). Then
sintf(A)= U{G/Gisan IFSOSin Xand G c A},
scl(A) = n{K/KisanIFSCSin Xand AcK}.

Note that for any IFS A in (X, 1), we have scl(A°)=(sint(A))° and sint(A°) = (scl(A))° .
Definition 2.10: [12] An IFS A in an IFTS (X, 1) is an
(i) intuitionistic fuzzy generalized closed set (IFGCS in short) if cl(A) < U whenever A ¢
U

and U is an IFOS in X.
(i) intuitionistic fuzzy regular generalized closed set (IFRGCS in short) if cl(A) c U
whenever

AcUand U isan IFROS in X.

Definition 2.11: [11] An IFS A in an IFTS (X, 1) is said to be an intuitionistic fuzzy
generalized semi closed set (IFGSCS in short) if scl(A) < U whenever A c U and U is an
IFOS in (X, 7).

Definition 2.12: [10] An IFS A in (X, 1) is said to be an intuitionistic fuzzy mgy™> closed
set (IFrgy*CS in short) if cl(int(A)) n int(cl(A)) < U whenever A < U and U is an
I[FrOS in (X, 1). The family of all [Frgy*CSs of an IFTS (X, t) is denoted by
IFrgy*C(X).

Result 2.13: [10] Every IFCS, IFGCS, IFRCS, IFaCS is an IF mgy*CS but the converses
may not be true in general.

Definition 2.14: [10] An IFS A is said to be an intuitionistic fuzzy mgy*open set
(IFTgy*O0S in short) in (X, 1) if the complement A® is an IFzgy*CS in X.
The family of all IFrgy*QOSs of an IFTS (X, 1) is denoted by IFrgy*O(X).

Definition 2.15: [5] Let f be a mapping from an IFTS (X, 1) into an IFTS (Y, o). Then fis
said to be intuitionistic fuzzy continuous (IF continuous in short) if f (B) e IFO(X) for
every Be o.

Definition 2.16: [6] Let f be a mapping from an IFTS (X, 1) into an IFTS (Y, o). Then fis
said to be
(1) intuitionistic fuzzy semi continuous (IFS continuous in short) if f *(B) e
IFSO(X) for every B € o.
(i) intuitionistic fuzzy a- continuous (IFo. continuous in short) if f *(B) e
IFaO(X) for every B € o.
(iii)  intuitionistic fuzzy pre continuous (IFP continuous in short) if f *(B) e
IFPO(X) for every B € o.

Result 2.17: [6] Every IF continuous mapping is an IFa-continuous mapping and every
IFa-continuous mapping is an IFS continuous mapping.

Definition 2.18: [5] A mapping f: (X, t) — (Y,0) is called an intuitionistic fuzzy y
continuous (IFy continuous in short) if f *(B) is an IFyOS in (X, 1) for every B € o.
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Definition 2.19: [9] Let f be a mapping from an IFTS (X, 1) into an IFTS (Y, ). Then f is
said to be an intuitionistic fuzzy generalized continuous (IFG continuous in short) if
f(B) e IFGCS(X) for every IFCS B in Y.

Definition 2.20: [11] A mapping f: (X, t) — (Y,o) is called an intuitionistic fuzzy
generalized semi continuous (IFGS continuous in short) if f (B) is an IFGSCS in (X, 1)
for every IFCS B of (Y, o).

Definition 2.21: [9] Let f be a mapping from an IFTS (X, 1) into an IFTS (Y, ). Then f is
said to be an intuitionistic fuzzy irresolute (IF irresolute in short) if f *(B) e IFCS(X) for
every IFCSBinY.

Definition 2.22: [9] Let f be a mapping from an IFTS (X, 1) into an IFTS (Y, o). Then fis
said to be an intuitionistic fuzzy generalized irresolute (IFG irresolute in short) if
f1(B) e IFGCS(X) for every IFGCSBin Y.

Definition 2.23: An IFTS (X, 1) is said to be an intuitionistic fuzzy my*cTy; (in short
IFmy*cTys) space if every IFrgy*CS in X is an IFCS in X.

Definition 2.24: An IFTS (X, 1) is an intuitionistic fuzzy my*gTyi, (IFTy*gTy1,) space if
every IFrgy*CSis an IFGCS in X.

Definition 2.25: An IFTS (X, 1) is said to be an intuitionistic fuzzy my*Ti;, (in short
IFTy*Ty2) space if every IFrgy*CSin Xis an IFyCS in X.

3. INTUITIONISTIC FUZZY mrgy* CONTINUOUS MAPPINGS

In this section | introduce intuitionistic fuzzy mgy*continuous mappings and
studied some of its properties.

Definition 3.1: A mapping f: (X, ©1) — (Y,0) is called an intuitionistic fuzzy
ngy*continuous (IFgy™> continuous in short) mapping if f *(B) is an IFrgy*CS in (X, 1)
for every IFCS B of (Y, o).

Example 3.2: Let X = {a, b}, Y = {u, v} and T; = ( x, (0.3, 0.3), (0.6, 0.6) ),
T,=(y,(0.6,0.7), (0.4,0.2) ). Then t= {0, T; 1-} and c = { 0, T, 1-} are IFTs on X and
Y respectively. Define a mapping f: (X, t) — (Y, o) by f(a) = u and f(b) = v. Then f
is an IFgy* continuous mapping.

Theorem 3.3: Every IF continuous mapping is an IFzgy* continuous mapping but not
conversely.

Proof: Let f: (X, 1) — (Y, o) be an IF continuous mapping. Let A be an IFCS in Y. Since f
is IF continuous mapping, f (A) is an IFCS in X. Since every IFCS is an IFrgy*CS,
f 1(A) is an IFTgy*CS in X. Hence f is an IFgy*continuous mapping.

Example 3.4: Let X ={a, b}, Y ={u, v} and T; =(x, (0.2, 0.2), (0.5, 0.7) ), T
=(y,(0.5,0.4),(0.4,0.2) ). Thent={0-, Ty 1-}and o ={0-, T, 1.} are IFTson X and Y
respectively. Define a mapping f: (X, 1) — (Y, o) by f(a) =u and f(b) =v. The IFS A =Yy,
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(0.4,0.2), (0.5,0.4) Y is IFCS in Y. Then f (A) is IFrgy*CS in X but not IFCS in X.
Therefore f is an IFTgy*continuous mapping but not an IF continuous mapping.

Theorem 3.5: Every IFS continuous mapping is an IFrgy* continuous mapping but not
conversely.

Proof: Let f: (X, 1) > (Y,o) be an IFS continuous mapping. Let A be an IFCS in Y. Then
by hypothesis f *(A) is an IFSCS in X. Since every IFSCS is an IFrgy*CS, f (A) is an
IFtgy*CS in X. Hence f is an IFrgy™* continuous mapping.

Example 3.6: Let X ={a, b} Y={uv}and T; = (% (0.5, 0.3), (0.5 0.6) )
and T, =(x, (0.6, 0.6), (0.3,0.4) ). Thent= {0-, T;,1-}and o = { 0-, T, 1-} are IFTs on
X and Y respectively. Define a mapping f: (X, t) — (Y, o) by f(a) = u and f(b) = v. The
IFS A =(y, (0.3, 0.4), (0.6, 0.6) ) is IFCS in Y. Then f (A) is IF mgy*CS in X but not
IFSCS in X. Then f is IF mgy* continuous mapping but not an IFS continuous mapping.

Theorem 3.7: Every IFP continuous mapping is an IFegy* continuous mapping but not
conversely.

Proof: Let f: (X, t) = (Y,o) be an IFP continuous mapping. Let A be an IFCS in Y. Then
by hypothesis f *(A) is an IFPCS in X. Since every IFPCS is an IFzgy*CS, f (A) is an
IFtgy*CS in X. Hence f is an IFrgy* continuous mapping.

Example 3.8: Let X ={a, b}, Y={u v}and T = (% (0.2, 0.3), (0.5 0.6) ),
and T, =(x, (0.6, 0.6), (0.3,0.4) ). Thent= {0-, T;,1-}and o = { 0-, T, 1-} are IFTs on
X and Y respectively. Define a mapping f: (X, 1) = (Y, o) by f(a) = u and f(b) = v. The
IFS A =(y, (0.3, 0.4), (0.6, 0.6) ) is IFCS in Y. Then f *(A) is IF mgy*CS in X but not
IFPCS in X. Then fis IF mgy* continuous mapping but not an IFP continuous mapping.

Theorem 3.9: Every IFa continuous mapping is an IFmgy* continuous mapping but not
conversely.

Proof: Let f: (X, 1) = (Y,o0) be an IFa continuous mapping. Let A be an IFCS in Y. Then
by hypothesis f *(A) is an IFaCS in X. Since every IFaCS is an IFrgy*CS, f (A) is an
IFTgy*CS in X. Hence f is an IFrgy* continuous mapping.

Example 3.10: Let X ={a, b}, Y={u v}and T; = { x, (04, 0.2), (0.6, 0.7) ),
T, =(x,(0.8,0.8), (0.2,0.2) ) and T3 = (x, (0.4, 0.3), (0.5, 0.6) ). Then T = {0-, Ty T5,1-}
and o = { 0., T3 1.} are IFTs on X and Y respectively. Define a mapping
f: (X, 1) > (Y, o) by f(a) =u and f(b) =v. The IFS A =y, (0.5, 0.6), (0.4, 0.3) ) is IFCS
in Y. Then f *(A) is IF mgy*CS in X but not IFaCS in X. Then f is IFaG continuous
mapping but not an IFa continuous mapping.

Theorem 3.11: Every IFy continuous mapping is an IF rgy* continuous mapping but not
conversely.

Proof: Let f: (X 1) — (Y,0) be an IFy continuous mapping. Let A be an IFCS in Y. Then
by hypothesis f *(A) is an IFyCS in X. Since every IFyCS is an IF mgy*CS, f-
Y(A) is an IF mgy*CS in X. Hence f is an IF mgy* continuous mapping.

Example 3.12: Let X = {a, b}, Y ={u v }and T; = (x, (0.5 0.6), (0.5 0.4)),
T,=(x,(0.2,0.2), (0.8,0.8) ) and T3 = (x, (0.4, 0.6), (0.6, 0.4) ). Then T = {0-, Ty T,,1-}

108 International Journal of Engineering, Science and Mathematics
http://www.ijesm.co.in, Email; ijesmj@gmail.com




ISSN: 2320-0294LL Impact Factor: 6.765

and o = {0, T3 1-} are IFTs on X and Y respectively. Define a mapping f: (X, 1) — (Y,
o) by f(a) = u and f(b) = v. The IFS A = (y, (0.6, 0.4), (0.4, 0.6) ) is IFCS in Y. Then
f "1(A) is IFTgy*CS in X but not IFyCS in X. Then f is IF mgy* continuous mapping but
not an IFy continuous mapping.

Theorem 3.13: Every IFG continuous mapping is an IF Tgy* continuous mapping but not
conversely.

Proof: Letf: (X 1) = (Y,0) be an IFG continuous mapping. Let A be an IFCS in Y. Then
by hypothesis f (A) is an IFGCS in X. Since every IFGCS is an IF tgy*CS, f-
Y(A) is an IF mgy*CS in X. Hence f is an IF mgy* continuous mapping.

Example 3.14: Let X ={a, b}, Y={u v}and T; = ( X, (0.2, 0.8), (0.3, 0.1) ),
and T, =(x, (0.1, 0), (0.4,0.9) ). Thent= {0, T1,1-}and c = { 0-, T, 1.} are IFTs on X
and Y respectively. Define a mapping f: (X, 1) — (Y, o) by f(a) = u and f(b) = v. The IFS
A=(y, (0.4,09),(0.1,0))is IFCSin Y. Then f *(A) is IFrgy*CS in X but not IFGCS in
X. Then fis IF mgy* continuous mapping but not an IFG continuous mapping.

Theorem 3.15: Every IFy*G continuous mapping is an IF rgy* continuous mapping.
Proof: Let f: (X, 1) = (Y,0) be an IFy*G continuous mapping. Let A be an IFCS in Y.
Then by hypothesis f (A) is an IFy*GCS in X. Since every IFy * GCS is an IF mgy*CS, f
"I(A) is an IF mgy*CS in X. Hence f is an IF mgy* continuous mapping.

Theorem 3.16: A mapping f: X — Y is IF mgy* continuous if and only if the inverse image
of each IFOS in Y is an IF IF gy*OS in X.

Proof: Let A be an IFOS in Y. This implies A®is IFCS in Y. Since f is IFzgy™*
continuous, f (A% is IFrgy*CS in X. Since f 1(A%) = (f *(A))%, f *(A) is an IF mgy™ OS in
X.

The relations between various types of intuitionistic fuzzy continuity are given in the
following diagram. In this diagram ‘cts.” means continuous.

IFG cts.
;’ IFP cts \
IF cts. \ IF mgy™ cts.
xﬂ IFa cts. 7
IFy*G cts.

The reverse implications are not true in general.

Theorem 3.17: Let f: (X, ) — (Y, o) be an IFrgy™* continuous mapping, then f is an
IF continuous mapping if X is an IFTy*cTy, space.
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Proof: Let A be an IFCS in Y. Then f (A) is an IFTgy*CS in X, by hypothesis. Since X
is an IFy*cTy, space, f (A) is an IFCS in X. Hence f is an IF continuous mapping.

Theorem 3.18: Let f: (X, ©) — (Y, o) be an IFrgy*continuous function, then f is an IFG
continuous mapping if X is an IFy*gTy, space.

Proof: Let A be an IFCS in Y. Then f }(A) is IFrgy*CS in X, by hypothesis. Since X is
an IFy*gT 1, space, f “(A) is an IFGCS in X. Hence f is an IFG continuous mapping.

Theorem 3.19: Let f - (X, » — (Y, o) be an IFmgy* continuous mapping and
g: (Y, 0) > (Z o) isIF continuous, then gof: (X ) - (Z, o) is an IFmrgy* continuous
mapping.

Proof: Let A be an IFCS in Z. Then g(A) is an IFCS in Y, by hypothesis. Since f is an
IFgy*continuous mapping, f *(g*(A)) is an IFTgy*CS in X. Hencego f is an
IFrgy™> continuous mapping.

Theorem 3.20: Let f: (X, 7) — (Y, o) be a mapping from an IFTS X into an IFTS Y. Then
the following conditions are equivalent if X is an IFTy*cTySpace.

(i) fisan IFTgy*continuous mapping

(i) If B is an IFOS in Y then f *(B) is an IFTgy*0S in X

(iii) f *(intB) cint(cl(int(f (B))) for every IFSBin Y.

Proof: (i) = (ii): is obviously true.

(ii) = (iii): Let B be any IFS in Y. Then int(B) is an IFOS in Y. Then f "(int(B)) is an
IFTgy*0S in X. Since X is an IFmy*cTy, space, f “(int(B)) is an IFOS in X. Therefore
f L(int B) = int(f "(int(B)) < int(cl(int(f *(B)))).

(iii) = (i): Let B be an IFCS in Y. Then its complement B® is an IFOS in Y. By hypothesis
f (int (B%) < int(cl(int(f *(B%)))). This implies f (B < int(cl(int(f (B%)))). Hence f "
(B is an IFa.OS in X. Since every IFa.0S is an IFtgy*0S, f *(B°) is an IFrgy*0S in X.
Therefore f *(B) is an IFTgy*CS in X. Hence f is an IFrgy* continuous mapping.

Theorem 3.21: Let f: (X, 1) — (Y, o) be a mapping. Then the following conditions are
equivalent if X is an IFmy*cTy, space.

(i) fisan IFmrgy* continuous mapping

(i) f *(B) is an IFmgy*CS in X for every IFCS B in Y

(iii) cl(int(cl(f *(A)))) =f (cI(A)) for every IFSB in Y.

Proof: (i) = (ii): is obviously true.

(ii) = (iii): Let A be an IFS in Y. Then cl(A) is an IFCS in Y. By hypothesis, f *(cl(A)) is
an IFrgy*CS in X. Since X is an IFmy*cTy, space, f (cl(A)) is an IFCS in X. Therefore
cl(f cl(A) = £ (cl(A)). Now cl(int(cl(f *(A)))) < cl(int(cl(f *(cl(A))))) = f-
(cl(A)).

(iii) = (i): Let A be an IFCS in Y. By hypothesis cl(int(cl(f'(A)))) c F'(cl(A)) = F(A).
This implies f*(A) is an IFaCS in X and hence it is an IFzrgy*CS in X. Therefore f is an
IFTgy* continuous mapping.

Theorem 3.22: Let f> (X, ©) — (Y, o) be a mapping. Then the following conditions are
equivalent if X is an IFmy* Ty, space:
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(1) fis an IFTgy*continuous mapping,
(i) If Biis an IFOS in Y then f "(B) is an IFTgy*OS in X,
(i) f(int(B)) <cl(int(f *(B))) wint(cl(f *(B))) for every IFSBin Y.

Proof: (i) = (ii) is obviously true

(ii) = (iii) Let B be any IFS in Y. Then int(B) is an IFOS in Y. Then f "(int(B)) is an
IFTgy*0S in X. Since X is an IFmy*Ty, space, f *(int(B)) is an IFyOS in X. Therefore
L(int(B)) ccl(int(F(int(B)))) w int(cl(F*(int(B)))) <cl(int(F1(B))) L int(cl(f *(B))).

(iii) = (i) Let B be an IFCS in Y. Then its complement is an IFOS in Y, then int(B®) = B".
Now by hypothesis f (B)=f (int(B)) < cl(int(f *(B))) w int(cl(f *(B®))). Hence f *(B°)
is an IFyOS in X. Since every IFyOS is an IFrgy*0S, f *(B°) is an IFrgy*0S in X. Thus
f (B) is an IFTgy*CS in X. Hence f is an IFrgy*continuous mapping.

Theorem 3.23: Let f: (X, 1) — (Y, o) be a mapping. Let f is an IFmrgy* continuous
mapping, Then (int(cl(f (A)))) < f (cl(A)) for every IFS B in Y, if X is an IFmy*cTy,
space.

Proof: Let f: (X, 1) = (Y, o) be a mapping. Let f is an IFrgy* continuous mapping. That
is f 1(B) is an IFrgy*CS in X for every IFCS B in Y. Let A be an IFS in Y. Then cl(A) is
an IFCS in Y. By hypothesis, f (cl(A)) is an IFTgy*CS in X. Since X is an IFmy*cTy,
space, f *(cl(A)) is an IFCS in X. Therefore cl(f “(cl(A)) = f *(cl(A)). Now int(cl(f (A))))
< int(cl(f *(cl(A))) < f (cI(A).

4. INTUITIONISTIC FUZZY rrgy* IRRESOLUTE MAPPINGS

In this section we introduce intuitionistic fuzzy mgy™* irresolute mapping and
studied some of its properties.

Definition 4.1: A mapping f: (X, t) — (Y, o) is called an intuitionistic fuzzy mgy*
irresolute (IFrgy* irresolute) mapping if £1(A) is an IFrgy*CS in (X, 1) for every
IFrgy*CS A of (Y, o).

Theorem 4.2: Let f: (X, ©) — (Y, o) be an IF mgy™* irresolute, then f is IF mgy* continuous
mapping.

Proof: Let f be IFTrgy™ irresolute mapping. Let B be any IFCS in Y. Since every IFCS is
an IFtgy*CS, B is an IFrgy*CS in Y. By hypothesis f (B) is an IF mgy*CS in X. Hence
fis an IFrgy* continuous mapping.

Theorem 4.3: Let f: (X, ) — (Y, o) be an IF IFrgy™* irresolute, then f is an IF irresolute
mapping if X is an IFmy*cTy, Space.
Proof: Let A be an IFCS in Y. Then A is an IF IFrgy*CS in Y. Therefore f *(A) is an IF
IFTgy*CS in X, by hypothesis. Since X is an IFzy*cTy, space, f (A) is an IFCS in X.
Hence f is an IF irresolute mapping.

Theorem 4.4: Let f: (X, ©) — (Y, o) be an IFrgy™ irresolute mapping, then f is an IFG
continuous mapping if X is an IFy*gTy, space.

Proof: Let A be an IFCS in Y. Then A is an IFrgy*CS in Y. Therefore f *(A) is an
IFTgy*CS in X, by hypothesis. Since X is an IFmy*gTy, space, f *(A) is an IFGCS in X.
Hence f is an IFG continuous mapping.
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Theorem 4.5: Let f (X, 1) — (Y, o) be a mapping from an IFTS X into an IFTS Y. Then
the following conditions are equivalent if X and Y are IFmy*cTy, spaces.

(i) fisan IFTgy* irresolute mapping

(i) f *(B) is an IFTgy*OS in X for each IFTgy*OSin Y

(iii) cI(f *(B)) < f *(cl(B)) for each IFS B of Y.
Proof: (i) = (ii): is obvious from the definition.
(ii) = (iii): Let B be any IFSin Y and B c cl(B). Then f }(B) c f "}(cI(B)). Since cl(B) is
an IFCS in Y, cl(B) is an IFmgy*CS in Y. Therefore f (cI(B)) is an IFTgy*CS in X,
by hypothesis. Since X is IFmy*cTy, space, f *(cI(B)) is an IFCS in X. Hence
cl(f 1(B)) < cl(f *(cI(B))) = f *(cI(B)). That is cl(f (B)) = f *(cI(B)).
(ili) = (i): Let B be an IFrgy*CSin Y. Since Y is IFmy*cTy, space, Bisan IFCSinY
and cl(B) = B. Hence f *(B) = f *(cI(B)) = cl(f *(B)). But clearly f'(B) < cl(f}(B)).
Therefore cl(f *(B)) = f *(B). This implies f (B) is an IFCS and hence it is an IFTgy*CS
in X. Thus fis an IFrgy™* irresolute mapping.

Theorem 4.6: Let f: (X, ©) — (Y, o) and g: (Y, o) = (Z, 6) be IF IFmTgy™* irresolute
mappings, theng of: (X, ©) — (Z, 9) is an IFmgy™ irresolute mapping.

Proof: Let A be an IFrgy*CS in Z. Then g*(A) is an IFrgy*CS in Y. Since f is an
IFTgy* irresolute mapping, f (g™*(A)) is IFTgy*CS in X. Hence g o f is an IFTgy*
irresolute mapping.

Theorem 4.9: Let f: (X, ©) — (Y, o) be an IFmgy™ irresolute and g: (Y, o) — (Z, 9) is
IFTgy* continuous mapping, then g o f: (X, ©) — (Z, o) is an IFmgy* continuous
mapping.

Proof: Let A be an IFCS in Z. Then g*(A) is an IFTgy*CS in Y. Since f is an IFmgy™*
irresolute, f *(g™*(A)) is an IFTgy*CS in X. Hence g o f is an IFgy* continuous mapping.
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